
A Programming Model and Runtime System for
Significance-Aware Energy-Efficient Computing

Vassilis Vassiliadis1 Konstantinos Parasyris2 Charalambos Chalios3 Christos D. Antonopoulos4

Spyros Lalis5 Nikolaos Bellas6 Hans Vandierendonck7 Dimitrios S. Nikolopoulos8
1,2,4,5,6Electrical and Computer Eng. Dept. 1,2,4,5,6Centre for Research and Technology Hellas 3,7,8Queen’s University Belfast

University of Thessaly, Greece (CE.R.T.H.), Greece United Kingdom

{vasiliad1,koparasy2,cda4,lalis5,nbellas6}@uth.gr {cchalios013,h.vandierendonck7,d.nikolopoulos8}@qub.ac.uk

Abstract
We introduce a task-based programming model and runtime system
that exploit the observation that not all parts of a program are
equally significant for the accuracy of the end-result, in order to
trade off the quality of program outputs for increased energy-
efficiency. This is done in a structured and flexible way, allowing
for easy exploitation of different points in the quality/energy space,
without adversely affecting application performance. The runtime
system can apply a number of different policies to decide whether
it will execute less-significant tasks accurately or approximately.
The experimental evaluation indicates that our system can achieve
an energy reduction of up to 83% compared with a fully accurate
execution and up to 35% compared with an approximate version
employing loop perforation. At the same time, our approach always
results in graceful quality degradation.

Categories and Subject Descriptors D.3.4 [Processors]: Opti-
mization

Keywords Energy saving, approximate computing, programming
model, runtime system

1. Introduction
One factor that contributes to the energy footprint of current com-
puter technology is that all parts of the program are considered to
be equally important, and thus are all executed with full accuracy.
However, as shown by previous work on approximate computing,
in several classes of computations, not all parts or execution phases
of a program affect the quality of its output equivalently.

In this paper, we introduce a novel, significance-driven pro-
gramming environment for approximate computing, comprising a
programming model, compilation toolchain and runtime system.
The environment allows programmers to trade-off the quality of
program outputs for increased energy-efficiency, in a structured
and flexible way. The programming model follows a task-based ap-
proach. For each task, the developer declares its significance de-
pending on how strongly the task contributes to the quality of the
final program output, and provides an approximate version of lower
complexity that returns a less accurate result or just a meaningful

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PPoPP ’15, Feb 7–11, 2015, San Francisco, CA, U.S.A..
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3205-7/15/02. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

default value. Also, the developer controls the degradation of out-
put quality, by specifying the percentage of tasks to be executed
accurately. In turn, the runtime system executes tasks on available
cores in a significance-aware fashion, by employing the approxi-
mate versions of less-significant tasks, or dropping such tasks alto-
gether. This can lead to shorter makespans and thus to more energy-
efficient executions, without having a significant impact on the re-
sults of the computation. The reader can find an extended version
of this manuscript in [2].

2. Programming Model
The programming model allows the programmer to express her
perspective on the significance of the contribution of each com-
putation to the quality of the final output using compiler directives.
Significance can be specified statically, or as an expression evalu-
ated at run-time, during task creation. It characterizes the relative
importance of tasks for the quality of the end-result of the appli-
cation. The programmer may provide an alternative, approximate
task body, which is executed whenever the runtime opts for a non-
accurate computation of the task. It typically implements a simpler,
approximate version of the computation, which may even degener-
ate to just setting default values to the output. Finally, tasks can be
grouped and assigned a common name, which is used as a reference
to implement synchronization at the granularity of task groups.

The programming model supports barriers at a global- or at a
task group-level. Barriers can be used to control the minimum qual-
ity of application results. The programmer can instruct the runtime
to execute (at least) the specified percentage (ratio) of all tasks – ei-
ther globally or in a specific group – in their accurate version, while
respecting task significance (i.e., a more significant task should not
be executed approximately, while a less significant task is executed
accurately). The ratio serves as a single, straightforward knob to
enforce a minimum quality in the performance / quality / energy
optimization space. Smaller ratios give the runtime more energy
reduction opportunities, however at a potential quality penalty.

The compiler for the programming model recognizes the prag-
mas introduced by the programmer and lowers them to correspond-
ing calls of the runtime system.

3. Runtime System
The runtime system selectively executes a subset of the tasks ap-
proximately while respecting the constraints given by the program-
mer. The relevant information consists of (i) the significance of
each task, (ii) the group a task belongs to, and (iii) the fraction
of tasks that may be executed approximately for each task group.
Obviously, preference should be given to approximating tasks with
lower significance values. The runtime system has no a priori infor-
mation on how many tasks will be issued in a task group, nor on the
distribution of the significance levels. This information must be col-

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the author/owner(s).

PPoPP’15, February 7–11, 2015, San Francisco, CA, USA
ACM 978-1-4503-3205-7/15/02
http://dx.doi.org/10.1145/2688500.2688546

275

Execution time (secs), lower is better Energy (Joules), lower is better Quality (PSNR), higher is better
D

C
T

Aggr Medium Mild
0

0.5

1

1.5

2

Aggr Medium Mild
0

20

40

60

80

100

Figure 1: Execution time, energy and quality of results for DCT under different runtime policies and degrees of approximation. The accurate
execution and the approximate execution using perforation are visualized as lines.

lected at runtime. We define two policies: one globally controlled,
based on buffering issued tasks and analyzing their properties, and
a policy that estimates the distribution of significance levels using
per-worker local information.

In the Global Task Buffering (GTB) policy, spawned tasks are
buffered, postponing their issue to the worker queues. Then, the
tasks in the buffer are analyzed and sorted by significance. Given
a per-group ratio of accurate tasks Rg , and a number of B tasks
in the buffer, then the Rg · B tasks with the highest significance
level are executed accurately. The tasks are subsequently issued
to the worker queues. The task buffering policy is parameterized
by the task buffer size. A larger buffer allows the runtime to take
more informed decisions. However, at the same time it increases
the latency between task spawning and execution.

The Local Queue History (LQH) policy avoids the step of task
buffering. Tasks are issued to worker queues immediately as they
are created. The worker decides whether to approximate a task
right before it starts its execution, based on the distribution of
significance levels of the tasks it has executed so far, and the target
ratio of accurate tasks (supplied by the programmer). Hereto, the
workers track the number of tasks at each significance level as they
are executed. The runtime targets a ratio of accurately executed
tasks that converges to the one specified by the programmer and
approximates those tasks with the lowest significance level. The
overhead of the local queue history algorithm for maintaining the
statistics that form the execution history of a group is negligible.
The policy requires no global information and synchronization.
It is thus more realistic and scalable than GTB. However, given
that each worker has only a localized view of the tasks issued,
the runtime system can only approximately enforce the quality
requirements set by the programmer.

4. Experimental Evaluation
We use a set of six benchmarks where we apply different approx-
imation approaches, subject to the nature/characteristics of the re-
spective computation. Due to space limitations Figure 1 presents
the results for DCT only. Three different degrees of approximation
are studied for each benchmark: Mild, Medium, and Aggressive.
They correspond to different choices in the quality vs. energy and
performance space. Quality control is possible solely by changing
the ratio parameter of task group barriers. In the experiments, we
measure the efficiency of our approach for the two different run-
time policies GTB and LQH. For GTB, we investigate two cases:
the buffer size is set so that tasks are buffered until the synchroniza-
tion barrier (referred to as Max Buffer GTB); the buffer size is set to
a smaller value, depending on the computation, so that task execu-
tion can start earlier (referred to as User Defined GTB). As a refer-
ence, we compare our approach against a fully accurate execution
of each application, and an execution using loop perforation [1].
The experimental evaluation is carried out on a system equipped
with 2 Intel(R) Xeon(R) CPU E5-2650 processors clocked at 2.00

GHz, with 64 GB shared memory. Each CPU consists of 8 cores
and all benchmark executions used 16 threads.

In DCT we assign higher significance to tasks that compute
lower frequency coefficients, because human eye is more sensitive
to low frequencies. As a quality metric, we use the PSNR of the
produced image with respect to a “golden” image produced by the
fully accurate execution. Note that PSNR is a logarithmic metric.
DCT produces visually acceptable results even if a large percentage
of the computations is dropped. Our policies, with the exception
of the Max Buffer version of GTB, perform comparably to loop
perforation in terms of performance and energy consumption, yet
resulting in higher quality results. This is due to the fact that our
model allows the programmer to define the relative significance of
code computing different frequency coefficients. This information
stems from algorithmic and physics properties of image processing
and can not be attained by compiler analysis. Furthermore, the
quality achieved by the educated approximation decisions taken by
our model can not be achieved by blindly dropping computations,
as is the case with loop perforation. The problematic performance
of GTB (Max Buffer) is due to the fact that DCT task creation is a
non-negligible percentage of the total execution time, therefore the
latency between task creation and task issue introduced by the Max
Buffer version of GTB results in a measurable overhead.

In general, across all applications, our system achieved an en-
ergy reduction of up to 83% compared with a fully accurate exe-
cution and up to 35% compared with an approximate version em-
ploying loop perforation. At the same time, our approach always
resulted in graceful quality degradation.

Acknowledgements
This work has been partially supported by the European Com-
missions Seventh Framework Programme (FP7/2007- 2013) under
grant agreement FP7-323872 (Project “SCoRPiO”) and under grant
agreement FP7-327744 (NovoSoft, Marie Curie Actions).
This work has been partially supported by the “Aristeia II” action
(grant agreement 5211, project “Centaurus”) of the operational
program Education and Lifelong Learning and is co-funded by the
European Social Fund and Greek national resources.

References
[1] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard.

Managing performance vs. accuracy trade-offs with loop perforation. In
Proceedings of the 19th ACM SIGSOFT Symposium and the 13th Euro-
pean Conference on Foundations of Software Engineering, ESEC/FSE
’11, pages 124–134, New York, NY, USA, 2011. ACM.

[2] V. Vassiliadis, K. Parasyris, C. Chalios, C. D. Antonopoulos, S. Lalis,
N. Bellas, H. Vandierendonck, and D. S. Nikolopoulos. A programming
model and runtime system for significance-aware energy-efficient com-
puting. Technical Report 2014-1, Department of Electrical and Com-
puter Engineering, University of Thessaly, Greece, December 2014.

276

